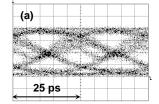
## Dispersion compensation in 40-Gb/s optical transmission by using coupled-cavity-type photonic crystals

Toshihiko Fukamachi<sup>1,2,3</sup>, Kazuhiko Hosomi<sup>1,2,3</sup>, Toshiki Sugawara<sup>3</sup>, Nobuhiko Kikuchi<sup>3</sup>, Toshio Katsuyama<sup>1,2</sup> and Yasuhiko Arakawa<sup>1</sup>


NCRC, I IS, Univ. of Tokyo 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan <sup>2</sup>OITDA, Tokyo, Japan, <sup>3</sup>CRL Hitachi, Ltd., Tokyo, Japan

Dispersion compensation by photonic crystal coupled-cavity waveguides (PhC CCWs) was investigated experimentally, and we demonstrated for the first time that the PhC can compensate for dispersion in a 40-Gb/s non-return-to-zero optical transmission. In this experiment, we stacked ten one-dimensional CCWs, which consist of SiO<sub>2</sub>/Ta<sub>2</sub>O<sub>5</sub>-thin films, and optical signals were transmitted into these CCWs three times [1]. As a result, a well-defined eye pattern was obtained at a distance of 4.5 km for a single-mode fiber (Fig. 1). However, it closed without the CCWs. This indicated that the CCWs compensated for a dispersion of more than 60 ps/nm. This result will enable a drastic downsizing in the dispersion compensator by PhC, compared with one used in

conventional optical communication.

This work is supported by OITDA contracted with NEDO and MEXT IT program.

[1] T. Fukamachi *et al.*, PECS-V, Th-P26, p206 (2004).



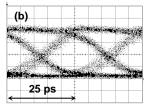



Fig. 1 Eye patterns (a) after transmission over the distance of  $4.5~\rm{km}$  and (b) after compensating for the dispersion.